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Oscillatory temporal behavior in an autocatalytic surface reaction model
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We discuss an autocatalytic surface reaction médeB— 2B, where particleA (B) adsorbgdesorbgthe
surface with rate constagt(1— ¢). We present numerical results from Monte Carlo simulations in dimensions
d=1, 2, and 3, as well as some analytical results, which are valid in any dimension. Especially the static
aspects of this model, like the behavior of the average coverages as a function of the control pdtaaneter
well understood from simple arguments which use the rate equations. Numerical studies of the temporal
behavior of this model reveal periodic oscillations in the coveraged#a and 3, but not fod=1. Our data
show that these periodic oscillations are relate@dytnchronizedivalanches of autocatalytic reactions. These
avalanches occur with a well defined frequency, and cona ipossible sizes. To explain this effect we give
a heuristic argument, which postulates that the model is driven toward a critical state of a random deposition
problem.[S1063-651X97)13603-0

PACS numbg(s): 68.10.Jy, 82.20.Wt, 82.65.Jv

I. INTRODUCTION The correct time scale for the evolution can be achieved by
considering the master equation of the sysfér-16.

Heterogenous catalytic reactions far from thermal equilib- In this paper we investigate a simple autocatalytic surface
rium are of great interest for practical applications as well ageaction model, which produces temporal oscillations in the
from a fundamental standpoint. In particular, these reactionparticle densitie$17]. This model consists of two kinds of
may exhibit many kinds of nonlinear phenomena, like peri-particles, sayA andB. ParticleA adsorbs with rate, par-
odic behavior in several length or time scalds2]. Well  ticle B desorbs with rate 4 ¢, and there is an infinitely fast
studied examples of surface reactions with such tempor&ﬁutocatalytic reaction stefp+B— 2B occurring on the sur-
and spatial oscillations include CO oxidation on Pt-groupface (see Sec. )l This results in a simple model whose be-
mej[als[3—5], NO-CO reaction on Pt and R6-8], and oxi-  pavior depends only on a single parameter
dation of H, on Pt[9,10]. The model has been studied in two dimensi¢2B) by

Although it is well established that these oscillations arisgvlai, Kuzovkov, and von Niess€id7], who used it in testing

from nonlinearities within the reaction, there may be sever he applicability of different approximationésuch as the

pos_5|bl_e me_chamsm; th‘t“ cause the effect. For example, ﬂ;lﬁ}ean field approximationin the context of a spatially cor-
oscillations in CO oxidation on Pt surfaces at low pressures lated svstem. In fact even auite complicated approximas
have been associated with adsorbate-induced transformatic%.% y : ' d P pp

of the surface structurfe]. At higher pressures the dominant uons, such gs.thelr “cgrrelatpn analysi¢18], seem to fail .
mechanism appears to be the oxide formafibt]. Pd110 N the description of th|§ reaction system. For example,_ Mai,
shows oscillations in CO oxidation as well as period dou-KuZovkov, and von Niessen concluded that there exists a

bling, presumably due to subsurface adsorption of oxygencritical” {~0.11 below which the particle densities oscil-
[12]. Another experiment on Pd revealed none of the spatidiate in time. They also argued that the origin of the oscilla-
structures observed for CO on Pt, possibly because of théons is the instability between a reactive, i.e., a state with
homogenizing effect of gas-phase coupliri]. Thus the nonzero density oB particles, andA-poisoned phases of the
possible feedback mechanisms responsible for the oscillatoigystem. Our findings do not support these conclusions.
behavior come in many different forms indeed. In this paper we concentrate on the complicated temporal
Understanding these mechanisms poses a major challengehavior of the model. In particular, we study the origin of
for modern surface science studies. In this respect simplthe periodic oscillations. We present numerical results from
models play an important role by allowing one to investigateMonte Carlo simulations carried out in dimensiahs1, 2,
the mechanisms in great detail. They also serve as a basid 3, as well as some interesting analytical results, which
toward more realistic simulations of reaction systems. Ofterare valid for any dimension. Average quantities, like the av-
the models are defined in terms of stochastic rules, whiclerage number oB molecules, are well understood from
describe how the system evolves from one configuration téhese simple analytical results. In addition, we find oscilla-
another. The rules simulate different reaction steps, such d@®ns, nearf=0, ford=2 and 3, but not for the 1D model.
adsorption, reaction, or desorption, hence capturing some @ur data show that these periodic oscillations are related to
the essential features of large classes of reaction systemsynchronizedavalanches ofA+B—2B reactions. These
avalanches occur with a well defined frequency, and come in
all possible sizeswe do not have a complete theory for the
*Permanent address: Laboratory of Inorganic Chemistry and Caemergence of the oscillations, but we give a simple heuristic
talysis, Eindhoven University of Technology, 5600 MB Eindhoven, argument(different from that of Ref[17]), which postulates
The Netherlands. that the model is driven toward a critical state of a random
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deposition problem. This heuristics is qualitatively able tot. Because every site is either vacant or occupiedAbgr
account for the observed temporal behavior of this model irB, these coverages obey a conservation law
d<3.

The rest of this paper is organized as follows. We intro- Oa(t) + 0g(t) + 0, (1) =1. (4)
duce the model in Sec. Il, which is followed by a discussion . ) . . .
of our analytical resultéSec. I1). In particular, our analyti- It IS €asy to write the time evolution of the coverage in the
cal results enable us to introduce a method, the conBtant-form of rate equations
coverage ensemble, to study the problem for very siall do
These simulation algorithms, including the const@ntov- —Azgo* —zK[AB], (5
erage ensemble similar to that introduced in R&B], are dt
discussed in Sec. IV. In Sec. V we report results from com-

puter simulations ird=1, 2, and 3 hypercubic lattices with ﬁz —(1-¢) 0+ zK[AB] (6)
periodic boundaries. The discussion, Sec. VI, contains a brief dt . ’

account of the static aspects of the modséc. VI A), as

well as the possible heuristic explanation for the emergence dé,

of these oscillationgsee Sec. VIB A short conclusion dt = {0, +(1=0) 0, @)

completes the paper in Sec. VII.
where[ AB] is the probability to find & to the right of an
Il. MODEL DESCRIPTION A at an arbitrary horizontal pair of neighboring sites, and the
factor z= 2d follows from the use of square symmetry, e.g.,
The model consists of two kinds of particles, denoted [AB] =[BA], in d dimensions. The parametiris the rate

andB, which follow the reaction sequence constant of the autocatalytic reaction. Note that although we
c are interested in the infinitely fast reaction ré¢e-o, the
A+* SAx (1) productK[ AB] may remain finite. Equation$), (6), and(7)
are exact, but contain the distributi¢®B], which is un-
L¢ known.
B* — B+*, 2 Some time averaged results for the coverages can be de-
. rived, because the time average of the derivatives at the left
A* +B* . 2B*, (3) hgnd side of Eqg5), (6), and(7) vanish. In that case E7)
gives
where the asterisk denotes a vacant site, and superscript as-
terisk stands for an adsorbed particle. With sufficient gener- £(0,)=(1—-{)(g), (8

ality the. catalysis sqrface. can be simulated b_y 4vhere the brackets denote the time averaging. Equa8pn
d-dimensional hypercubic lattice, where the autocatalytic re'simply states that on average the number of adsorfisg

action step occurs only betwegn nearest-ne_ighbor particler?]ust equal the number of desorbiBgs. In addition, using
on that lattice. It is also convenient to scale time so that th%qs. (4) and (8), we find that the average coverage of one

rate constant_of thé, adsorption equ_als, anc_i o_f B_ d_esorp- species is enough to determine the coverages of other spe-
tion 1— ¢, while the last autocatalytic step is infinitely fast. cies, e.g

Thus the whole reaction sequence E{3$—(3) depends only

on a single parametef. The rate constants are transition l

probabilities in the master equation for the sys{er@]. (0g)= H<0*>=§(1—<0A>). ©)
This model has several potential experimental realizations

in d=2, simulating a class of possible realistic feedbackrhjs exactrelation is an important guide to study the model
mechanisms. For exampld,andB could be the same mol- i, the |imit £—0 (see Sec. IV.

ecule,_ which are adsorbeq differently. Th&rmmay dgnote a It is easy to solve Eqg5), (6), and(7) in the mean field
chemisorbed an@& a physisorbed molecule, as neighboring approximation (MFA), which involves setting [AB]
B weakens the bonding & and turns it toB [see Eq(3)].  =¢,0,. A straightforward calculation yields equilibrium

Alternatively, B may be adsorbed on a reconstructed sitepgints (( 6,),(6g))=(1,0) and ¢/zK,{— {%/zK) [17]. The
and such a molecule induces the same reconstruction on Qpoisoned state corresponds to a saddle point, so the system
neighboring unreconstructed occupied site. On the otheg;i evolve to (¢/zK,¢— ¢2/zK)—(0,), asK—o. Previous
hand,A could beB plus an additional ligand. Such a ligand work [17,20] has clearly pointed out that the MFA is inad-
could desorb immediately iA and B come into contact, equate to describe the behavior of this model, as it fails to
leaving twoB's on the surface. We may also think of a forest predict the temporal oscillations of the coveragese Sec.
fire model: letA denote a green, anél a burning tree. In v B). However, it is interesting to note that the MFA gives
particular, for small; the trees grow slowly and burn fast.
(Og)=Purt, (10)
lll. ANALYTICAL RESULTS
1—=(0a)=1= v, 1D
It is convenient to characterize the macroscopic state of

the system by monitoring the coveragését), (i=+*,A,B),  with By=0. Below, we shall compare this prediction with
i.e., the fraction of sites occupied by partidleat the time  numerical data.
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Another useful observable is the average number of A. Direct Monte Carlo simulations

A+B—2B reactions peA adsorption, These simulations were started from a lattice fully cov-

o ered withB’s at timet=0. Subsequently we followed the
Sl )= sP..(s.0), 12) time evolution of the system according to E@$), (2), and
a0 ¢) SZO 204 S:¢) 12 (3). The correct time scale for the evolution of the system
) - ] _ was obtained by considering the transition probabilities
wherePyq{s,{) is the probability that an adsorption &fis v, which indicate the probability for the system to evolve
immediately followed bys autocatalytic reactionfsee EQ.  from a configuration to 8. (These transition probabilities

(3)] for given . If A adsorbs on a site without neighboring are( for A adsorption, t ¢ for B desorption, an& for the

B,s=0. Because at the steady state each adsomingll g iocatalytic reactionin particular, the first reaction which
later transform intd3 via the autocatalytic reaction, we have pings the system frona to 8 will take time At, which is

the constrains,ge=1 for all £. Thus it is more interesting to exponentially distributed14—16,
look only at realavalanchesi.e., the distribution of the num-
ber of A’s which turn intoB’s following an A adsorption.

The average size of these avalanches is given by At=— R_alnr’ (19
S_(Z)Zszl sP(s,{), (13 whereR,=3,4W,, is the total transition rate from the con-

figuration «, andr is a uniformly distributed random num-

where P(s,¢) is the probability that an avalanche has sizePer. 0<r<1. Specifically, using Eqg1), (2), and(3),
s. In other wordsP(s,{) is the size distribution of clusters
on the ;urface, a_nH{) is the mean cluster size. Distrib_ution R,(t)=Ng(1—)+N, ¢, (20)
P(s,{) is proportional taP 4{s,¢) for s=1. The proportion-
ality constant can be derived from the normalization. We . )
haveS?_ oPauds ) =37, P(s,{) =1, which leads to whe_zreNB(N*) is the nu_mber oB _mo_lecules(vacant sﬂ_e}s
s s at timet. The first term in Eq(20) indicates the probability
Pagds,0) of B desorption, and the second Af adsorption. The infi-
1-P.00) (14 nitely fastA+B reactions do not affecit.
ads ™ Thus the simulation algorithm is the following:
Consequently, (1) Calculate R, from Eq. (20). Update the clock
t—t+ At [see Eq(19)].
— 1 (2) With the probabilityN, ¢{/R, the next reaction i\
S= 1-P,d0,)" (15) adsorption, otherwis& desorption.
(3) If the next reaction isB desorption, then randomly
In the spirit of the MF approximation we may assume that, ifselect a site which is occupied byBaand make it empty.
£ is small, g is small as well, and therefore @l's are well UpdateN,—N, +1, Ngs—Ng—1, and go to 1.

P(s,0)=

separated (4) If the next reaction isA adsorption, then select a va-
(6,)—2(6a) cant site at random and fill that withA. Update
_(bi)—Z(bs N, —N, —1.
Paad 0.~ (60,) (16 (5) Check the nearest-neighbor sites.
(6) If there are ndB next to the newly adsorbed, then
In that case go to (1).
(7) Identify all s A's which belong to the same cluster
S(0)~ () :ﬂ’ (17) with the newly adsorbedd. Turn them intoB’s. Update
z(0g) Z Ng—Ng+s. Go to(1).

) ) The system was simulated f62—15x10° time units.
where the last step follows from E(g). This approximate Thg first half of the time steps were discarded in order to

calculation gives.a solid reason Fo anticipate thgt the size OéclllOW the system to evolve into a steady state. During the
the avalanches, i.e., the mean sizeAoflusters, diverges as |atter half of the simulation we monitored the time evolution
{—0. Such gcjwerggnce dictates that we expect the model tgf ihe coverages of the adsorbates, as well as collected his-
possess a critical point.=0 (for all d), and togram of the probability distribution of the avalanche
sizess.
We simulated system sizes betweefi a0d 2x 10 sites.
with 7<2. Because the fluctuations in the coverages, which may drive a
finite system to theA poisoned state, are larger for smaller
{ (see below, we increased the system size gradually as
{—0. However, due to the larger fluctuations and limitations
We have performed Monte Carlo simulations in in the available computer memory, we could not simulate the
d-dimensional hypercubic lattices with=1, 2, and 3 using system behavior properly for very smdll To this end we
periodic boundary conditions. We utilize two kinds of simu- utilized another simulation method, the constBntoverage
lations, which are described below. ensemble, which is described below.

P(s,0)xs™" for s>1, (18

IV. NUMERICAL METHODS



55 OSCILLATORY TEMPORAL BEHAVIOR IN AN . .. 4173

100

..-". 107!

"' I Sm102 e

103

<0p>/<1-8, >
= ]
0%%
a‘e
B,
R,
<
o
o
o
(=]

104
0 102 101 100
0 1 2 3 4 5
g
1 P 4| B o
4»"’ 101 o..
b 4
sf ® N
@10
3 :
& 6 S
\% g
i 10®
g 4 rd
¢‘9 104

yeﬂ 10°8 102 10
0

0 2 4 6 .8 1.
L/a-0) w0 © )

FIG. 1. The ratia@) ( 0g)/(1—{64)) vs ¢, and(b) (0g)/(6, ) vs
{l(1—{). The data are collected using both direct simulations
(filled markers and constanB coverage ensembl@pen markers
Different symbols denote the results from 1DY), 2D (¢ ), and
3D () hypercubic lattices. The dashed lines on the diagonal are
Eq. (9).
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B. Simulations with constantB coverage
This approach is based on E§), which implies that the FIG. 2. The log-log plot of 6g) as a function of from (a) 1D,
average coverage of two species can be used to determiff@ 2D, and(c) 3D hypercubic lattices. The data are collected using

Z, eqg. both direct simulations@®) and a constanB coverage ensemble
(O). The solid lines, which depict the power-law behavior for small
(0g) Z, have slopesa) 1.24,(b) 1.04, and(c) 1.01.
= Q. (21
=T {6w)

we could not use this method for studying the dynamical

We started the simulations from a system where a fixed fradeehavior of the system, but only average coverages as well
tion of sites, the targeB coveragedg, was randomly occu- @S the avalanche size dls_tr|but|on were monitored. In prin-
pied by B’s, while the rest of the sites were empty. Subse-cible, lack of the correct time dependence could also mean
quently the system was simulated similarly to Sec. IV A, butthat the measured, differs from the true time averaged
the choice betweeB desorption andh adsorption was de- Value (6,). We studied this by measuring) and (6g)
termined by theB coverage at time. If fg(t)> 6, the next from direct Monte CarldMC) simulations, and performing a
reaction wasB desorption, otherwisé adsorption. In this ~constant8 coverage simulation alg= (). Within the nu-
mannerég(t) was kept at the target coveragg on average. merical accuracy we found that tllecoverages of these two
After a certain transient period the system evolved to aimulation methods coincideda=(6,).
steady state, and the average coveragk'sf6,, was mea-
sured. Using Eq(21) we can determine the effective value of
¢ which corresponds to these valueséyf and 65 .

This method facilitates the simulations at smalln prac- A. Average coverages
tice, the lower limit |n§ is dictated by theglailable Computer In this section we Study the average coverages as a func-
memory, because we requiMs>1, i.e., fg cannot be too tion of {. We start by checking Eq9), which suggests that
small. In this work we performed simulations down to it is sufficient to monitor only the coverage of one species of
0s=10 *-10 3, which corresponds tg~10 4-10 3. adsorbants, for examplégg). Figure 1 shows the ratios

On the other hand, because the time evolution of the sys-0g)/(1—(0,)) =¢ and (6g)/{ 6, )=¢/(1—¢) for d=1, 2,
tem was not determined by the master equation, these simand 3 hypercubic lattices. The data are collected using both
lations do not have the correct time dependence. Therefordirect and constar®- coverage simulations. Indeed, all the

V. SIMULATION RESULTS
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data collapse excellently on the diagonal lines of Filsde  Using least square fits to the data of Fig. 2, we find
Eqg. (9)], independent of the dimensionality. This also nu-8,p=0.24+0.04, B8,5=0.04+0.04, and B;5=0.01+0.04.
merically justifies the constam-ensemble, which we have Similar analysis of the data fdrd,) and(6,) gave consis-
used especially for small. tent results, although the corrections to the asymptotic be-
Figure 2 showg ) as a function of, for the hypercubic havior seem to be more important in these data than for
lattices using both direct and constd@teoverage simula- {6g). The above error bars ¢f are dominated by the spread
tions. For clarity, the figure does not show overlappingof the fits depending on which set of the data was used in the
points, but it can be seen that the data from both ensemblemalysis.
again fall on the same curve, except for some deviations in We can now compare the above measurements with the
Fig. 2@) at {~0.27. The constarB-coverage simulation MFA results, Eqs.(10) and (11), where By=0. We find
does not give the same result as the direct one in 1D, becausigat (#g) and 1-(68,) behave as in Eq$10) and (11) suf-
the former method forces the system into the reactive statficiently close to/.. In particular, in 2D and 3D the data are
even when the system would like to poison #%0.265. In  consistent with8,p= 835=0. However,B;p is clearly dif-
fact, direct simulations in 1D fof<0.265 always tend to- ferent from zero. In other words, our simulations indicate
wards anA-poisoned state due to the finite system sizeghat in 1D lim,_o(6a,6g,6,)=(1,0,0), but in higher di-
which we could simulate. More accurate computations withmensions the steady state approaches to a mixtufe pr-
constantB ensemble numerically confirm that there exists aticles and vacant sites.
reactive steady state for dl>¢.=0, as discussed below Eq.

(17). . .
Figure 2 also shows th&#yg) is quite a complicated func- B. Coverages as a function of time
tion of ¢, especially in 1D. The data fdm,) and(#6, ) also The main motivation for studying this particular model is

show similar behaviotdata not shown However, for small  the complicated temporal behavior, involving periodic oscil-
¢, i.e., near{., all the data seem to approach a power lawlations in the coverages. Because the condBaetverage

(see, e.g., the solid lines in Fig) 2 ensemble lacks the correct time dependence, all the results of
g1 this section are from direct MC simulations. Unfortunately,
(Og) P, (220 this excludes the simulations for very sméall
4 s Figure 3 displays the temporal evolution @§(t) for sev-
1=(0a)=¢ ()L, (23 eral values of. It can be seen that the amplitude of fluctua-

tions increases with decreasing This behavior is most
clearly seen in 2D data of Fig(l3), where especially the data

1-7
- > B
() { (6p) L% @9 for {=0.05 show clear oscillatory behavior.

(@ ®) (c)

1
FIG. 4. The power spectr&(w) of the
Fourier-transforms of the data of Fig. 3. Panels
S@) ! showS(w) for (a) 1D, (b) 2D, and(c) 3D hyper-
cubic lattices, with the same values{és in Fig.
M M 3 (¢ decreases from top to bottgntor clarity,
1 raw S(w) is normalized such that the maximum
M equals unity.
l A } .
0 A 2 3 . A 2 . . ] .
o

0

4
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FIG. 5. The scaled power spectruiio)/S,, which describes FIG. 7. The 2D distribution of the avalanche si®(s,{~0) at
the signal to noise ratio, for different system sitesolid, dashed, {~0.001 70 for various system sizes=100 (O), L=300 (¢)
a_md dotted lines show the _data Ipat 512, 1024, and 2000, respec- | — 1000 @), andL=3000(A). Diagonal dashed lines have slope
tively. Data are from 2D simulations gt=0.09. 1.65. The inset shows the crossover sigL)><L”, which is
o ) ) ~ estimated from the intercept of dashed lines depicting the power-
To analyze these oscillations in more detail, we Fourienaw decay and plateaulike regime. The solid line in the inset has
transformed the data of Fig. 3. Resulting power spectrgiope 1.6.

S(w) are shown in Fig. 4. For clarity, tH&s are normalized

such that the maximum equals unity. We find that especiallyeyeg| S, from the average of the signalfar away from the
the spectra of 2D and 3D data in Figgbpand 4c) show  peak. The scaled spect®iw)/S, should describe the signal
clear peaks, i.e., fingerprints of periodic oscillations intg noise ratio. For example, Fig. 5 displag§w)/S, for
6g(t), with a well defined frequency. The oscillations are  +=0.09 using systems with linear sizes=512, 1024, and
again especially clear in the spectrum of 2D data withogoo, where the noise levéd, is the average o8(w) be-
{=0.05, where we can distinguish more than ten overtonegyeenw=0.5-0.8. We find that the spectra show an oscilla-
(only six of them are shown in Fig)4The peaks of 2D and  tory pehavior withw~0.08, where the frequency does not
3D spectra become more and more pronounced-a®,  depend orl. Additionally, the relative amplitude of the os-
which again indicates that the oscillation amplitude is larget;jjations is an increasing function df. Similar tests with
for smaller { (also see Fig. B In addition, as{—0, the  qther values of, as well as the 3D data, yielded the same
characteristic frequency of the oscillations decreases. HOV"concIusions(data not shown Thus we conclude that the

ever, the 1D data in Fig.(4) is less clear. In fact, we do not peripdic oscillations in the particle coverages are not due to
find convincing evidence of periodic oscillations in 1D, but the finite size effects.

cannot rule out such a possibility just from these data be-
cause we could not extend 1D simulations for very snjall

In order to study how the oscillations depend on the sys-
tem sizeL, we repeated the calculation of the power spectra \We start this section by testing E(.8). For that purpose
for severalL. In this context we studied mostty=2, where ~We have utilized the constaBt-coverage ensemble, which
the oscillations are most pronounced. To distinguish the amfacilitates the simulations at smdll As discussed above, the
plitude of periodic oscillations from the statistical noise lower limit in { is set by the available computer memory.

(which is larger for smaller systemsave estimated the noise Figure 6 shows the calculatd®(s,{~0) using the data for
smallest{ available to us. Indeed, the data confirm ELg),

apart from deviations for very large which are mainly due

C. Distribution of avalanche sizes

100
100
1074
0 104
o 108
)
a 10-8
1012 !
\%
101 108 108 107 1012
S
101 103 105 107
FIG. 6. The distribution of the avalanche sidegs,{~0) from s
d=1, 2, and 3 dimensional hypercubic lattic&s,(¢ , and, re-
spectively. In 1D, {~0.003 96; in 2D,{~0.001 70; and in 3D, FIG. 8. The 2D distribution of the avalanche sizB$s,?)

{~0.000 13. The dashed line guiding the eye has slefe65. for various values of{:{~0.00170 (O), ¢(~0.0163 (¢), ¢
These systems had 7-910° sites depending on the value of =0.05(0), and{=0.09 (A). The dashed line has slope 1.65.
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o, | ' (c)

FIG. 9. The time dependence éf and of the

number of the avalanches of sigeandp,, where
MWWW’W ps's are averaged over a b[i2¥? 212242] The
figures show(from bottom to top 6z and p's
with k=0, 2, 4, 6, 8, 10, and 12. The data are
N e A collected usinga) {=0.265 in 1D,(b) {=0.05in
il l ML,_ 2D, and(c) {=0.023 in 3D. For clarity, the num-

ber of avalanches, as well &g, is scaled such
hosdod l L / 4 that the maximum e i
VLN RN Y W quals unity.

Leall LR

density (arbitrary units)
density (arbitrary units)

density (arbitrary units)

500 1000 1500 1000 1050 1100 1000 1050 1100
t t t

to the finite system sizdsee below. We estimate that in 3D possess similar synchronization as in Piee Fig.

7=1.65+0.1, wherer seems tdbut need ngtbe indepen- 10Q(b)], i.e., all p; show the same characteristic frequency

dent ond. w~0.1. On the other hand, the 1D spectra fgrare practi-
To study howP depends on the size of the system, wecally identical to that ofdg, but they do not show evidence

repeated the 2D simulations &t~0.00170¢g=103) for  of periodic oscillations.

severalL. The results are displayed in Fig. 7. From these

data it is apparent that for finite systems Etf) holds only VI. DISCUSSION

up to a size dependent cutodf,,{L), at which the data

levels toward a plateaulike regime. The dashed lines in Fig. 7

illustrate this kind of behavior. We estimated the crossover The average coverages, €.¢6g), are reasonably well

size sy roughly from the intercepts of these lines. Plotting understood using the implications from the rate equations,

the estimates as a function bf as done in the inset of Fig. especially Eq(9). We find that neat =0, (6g) (as well as

A. Static aspects

7, indicates thas,,, grows algebraically with_, (60,),{0,)) decay as a power law characterized by an expo-
nent 3. At d=2 the measure@® agrees with the MF result
Smax*L", (29 Bur=0.

Concerning P(s,{), this autocatalytic reaction model
. . shares many features with forest-fire modé&s,22, which
Figure 8 shows the measured distribut(s,{) for sev-  pae peen introduced as possible realization of self-

eral values of in 2D. The data show that a nonzefthas a = o rganized criticality[23]. Specifically, we find thaP(s,0)
similar effect as the finite system size. It introduces a C“tOﬁdecays as a power law up to a finite-size cutgff,<L”
L.

size to the power-law decay &f. For{>0, the data seem t0 5 ever, the current model is rather critical in the usual

decay roughly exponentially for very large>sy,({), Ut sense of the word, as one needs to tgrel. =0 to achieve
we have not performed detailed study of the scalingdp air
Smad {)- In conclusion, we find that as— {.=0 the model
has avalanches dll sizes Test runs in 2D indicate that 1
either the finite system size or nonzefpdoes not qualita-

tively affect the power-law decay until a certain cutoff size.

wherev,p=1.6+0.1.

D. Avalanche density as a function of time

This section deals with the number of the avalanches as a
function of time, which has been measured from direct MC
simulations. Figure 9 show#z and the number of ava-
lanches of sizes, ps, as a function of time. For clarity,
ps(t) are calculated by collecting the data over exponentially
increasing bins, and the data are scaled such that the maxi-
mum equals unity. Especially the 2D data in Figh)9show
that the oscillations indg involve avalanches oéll sizes % 06 12 0 1 2 3 4 5
(instead of being determined by the largest avalanches, for
example. Remarkably, theps's are alsosynchronizedsuch
that they occur with the same characteristidor all s. FIG. 10. The power spectra @) 1D and(b) 3D data forég and

While the 1D and 3D data are less clear, we calculated thg_s [these data are shown in FiggaPand 9c)]. The displayed

power spectra ops from the data of Figs. (@) and 9c¢). The  spectrafrom bottom to top are forgg , andps with k=0, 2, 4, and
resulting spectra are shown in Fig. 10 together with thes. For clarity, the spectra are scaled such that the maximum equals
S(w) of #g. Indeed, the spectra indicate that the avalancheanity.

power spectrum (arbitrary units)
power spectrum (arbitrary units)
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the critical state. Fot>0, P(s,{) decays roughly exponen- w=~TPI[max ) —min(6,)]. (27

tially for s>s/ .
y mal &) Thus the characteristic frequency of the periodic oscillations

is independent oL. As the amplitude of the oscillations,
3[ max(@,)—min(6,)], will increase when the average size of
The main motivation for studying this particular model is the avalanches increases—0 as{—0, in agreement with
the complicated temporal behavior, involving periodic oscil-the numerical data.
lations in the coverages. The simulation results presented In principle, this heuristic explanation does not make a
above give evidence that the model exhibits temporal oscildifference between different dimensionalities. However, it
lations in the coverages of the adsorbates, at least in two adfiay happen that for somd, p.({)—1 for {—{:,>0,
three dimensions. which may cause that direct numerical simulations tend to
We find that these periodic oscillations near0 are re-  the poisoned staté,=1 already at/; ,>{.=0. It seems to
lated to synchronized avalanches, which occur with a wellS that this is the case id=1, with {;,=0.262+0.005.
defined frequency and come in all possible siges, exhibit T_hus we believe that the oscillations are not present in one
power-law scaling Although we do not have a complete dimension.
theory for the emergence of the oscillations, possibly the
simplest heuristic explanation for this synchronization of the
avalanches is the followingLook at Fig. 9b), for example} In conclusion, we have reported analytical and numerical
The typical cycle consists of a sudden increasefgffol-  studies for a simple autocatalytic surface reaction model,
lowed by a slower decrease. In the end of this decrease p&hich consists of two kinds of particles, s&y,andB. Par-
riod, as mostB’s have desorbeddg is very small, andA  ticle A adsorbs with rate/, particle B desorbs with rate
clusters are free to grow. As there are very fAw B reac- 1— ¢, and there is an infinitely fast autocatalytic reaction step
tions, typicalA clusters grow until there is a nonzero prob- A+B—2B occurring on the surface. In particular, the static
ability that an arbitrary cluster is separated fronBamol-  aspects of this model, like the behavior of the average cov-
ecule only by a single vacant perimeter site. This happens arages as a function of the control parameferare well
6, is close to the critical occupan@y,(6g)=p.(¢) of this  understood from simple arguments which use rate equations.
kind of a random deposition problem. Detailed studies of the temporal behavior of this model re-
This heuristics should qualitatively account for the ob-veal periodic oscillations in the coveragewear{.=0) for
served temporal behavior of this model. Most importantly,d=2,3, but not for a 1D model. Our data show that these
the identification with such a deposition problem should beperiodic oscillations are related gynchronizedavalanches
compatible with Eq(18), because one would reasonably ex- of A+B— 2B reactions. These avalanches occur with a well
pect that at the criticaby=p.({) the surface containg  defined frequency, and come @l possible sizes. We were
clusters of all sizes. In addition, during each period the nhum#not able to formulate a complete theory for the emergence of
ber of A adsorptionsN,4s, Which is needed to attaip.(¢) these oscillations, but our heuristic argument, which postu-

B. Periodic oscillations

VIl. CONCLUSION

hasN,qe (N, )/ w. Thus lates that the model is driven toward a critical state of a
_ 4 random deposition problem, is qualitatively able to account
Pc(§)~max fa)~min(fa) +Nagd- for the observed temporal behavior of this modeblis 3.
—d
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