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Oscillatory temporal behavior in an autocatalytic surface reaction model

J.-P. Hovi, A. P. J. Jansen,* and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland

~Received 11 November 1996!

We discuss an autocatalytic surface reaction modelA1B→2B, where particleA (B) adsorbs~desorbs! the
surface with rate constantz (12z). We present numerical results from Monte Carlo simulations in dimensions
d51, 2, and 3, as well as some analytical results, which are valid in any dimension. Especially the static
aspects of this model, like the behavior of the average coverages as a function of the control parameterz, are
well understood from simple arguments which use the rate equations. Numerical studies of the temporal
behavior of this model reveal periodic oscillations in the coverages ford52 and 3, but not ford51. Our data
show that these periodic oscillations are related tosynchronizedavalanches of autocatalytic reactions. These
avalanches occur with a well defined frequency, and come inall possible sizes. To explain this effect we give
a heuristic argument, which postulates that the model is driven toward a critical state of a random deposition
problem.@S1063-651X~97!13603-0#

PACS number~s!: 68.10.Jy, 82.20.Wt, 82.65.Jv
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I. INTRODUCTION

Heterogenous catalytic reactions far from thermal equi
rium are of great interest for practical applications as wel
from a fundamental standpoint. In particular, these reacti
may exhibit many kinds of nonlinear phenomena, like pe
odic behavior in several length or time scales@1,2#. Well
studied examples of surface reactions with such temp
and spatial oscillations include CO oxidation on Pt-gro
metals@3–5#, NO-CO reaction on Pt and Pd@6–8#, and oxi-
dation of H2 on Pt @9,10#.

Although it is well established that these oscillations ar
from nonlinearities within the reaction, there may be seve
possible mechanisms that cause the effect. For example
oscillations in CO oxidation on Pt surfaces at low pressu
have been associated with adsorbate-induced transform
of the surface structure@3#. At higher pressures the domina
mechanism appears to be the oxide formation@11#. Pd~110!
shows oscillations in CO oxidation as well as period do
bling, presumably due to subsurface adsorption of oxy
@12#. Another experiment on Pd revealed none of the spa
structures observed for CO on Pt, possibly because of
homogenizing effect of gas-phase coupling@13#. Thus the
possible feedback mechanisms responsible for the oscilla
behavior come in many different forms indeed.

Understanding these mechanisms poses a major chall
for modern surface science studies. In this respect sim
models play an important role by allowing one to investig
the mechanisms in great detail. They also serve as a b
toward more realistic simulations of reaction systems. Of
the models are defined in terms of stochastic rules, wh
describe how the system evolves from one configuration
another. The rules simulate different reaction steps, suc
adsorption, reaction, or desorption, hence capturing som
the essential features of large classes of reaction syst
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The correct time scale for the evolution can be achieved
considering the master equation of the system@14–16#.

In this paper we investigate a simple autocatalytic surf
reaction model, which produces temporal oscillations in
particle densities@17#. This model consists of two kinds o
particles, say,A andB. ParticleA adsorbs with ratez, par-
ticle B desorbs with rate 12z, and there is an infinitely fas
autocatalytic reaction stepA1B→2B occurring on the sur-
face ~see Sec. II!. This results in a simple model whose b
havior depends only on a single parameterz.

The model has been studied in two dimensions~2D! by
Mai, Kuzovkov, and von Niessen@17#, who used it in testing
the applicability of different approximations~such as the
mean field approximation! in the context of a spatially cor
related system. In fact, even quite complicated approxim
tions, such as their ‘‘correlation analysis’’@18#, seem to fail
in the description of this reaction system. For example, M
Kuzovkov, and von Niessen concluded that there exist
‘‘critical’’ z̃'0.11 below which the particle densities osc
late in time. They also argued that the origin of the oscil
tions is the instability between a reactive, i.e., a state w
nonzero density ofB particles, andA-poisoned phases of th
system. Our findings do not support these conclusions.

In this paper we concentrate on the complicated temp
behavior of the model. In particular, we study the origin
the periodic oscillations. We present numerical results fr
Monte Carlo simulations carried out in dimensionsd51, 2,
and 3, as well as some interesting analytical results, wh
are valid for any dimension. Average quantities, like the a
erage number ofB molecules, are well understood from
these simple analytical results. In addition, we find oscil
tions, nearz50, for d52 and 3, but not for the 1D mode
Our data show that these periodic oscillations are relate
synchronizedavalanches ofA1B→2B reactions. These
avalanches occur with a well defined frequency, and com
all possible sizes. We do not have a complete theory for th
emergence of the oscillations, but we give a simple heuri
argument~different from that of Ref.@17#!, which postulates
that the model is driven toward a critical state of a rand
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55 4171OSCILLATORY TEMPORAL BEHAVIOR IN AN . . .
deposition problem. This heuristics is qualitatively able
account for the observed temporal behavior of this mode
d<3.

The rest of this paper is organized as follows. We int
duce the model in Sec. II, which is followed by a discuss
of our analytical results~Sec. III!. In particular, our analyti-
cal results enable us to introduce a method, the constaB
coverage ensemble, to study the problem for very smalz.
These simulation algorithms, including the constant-B cov-
erage ensemble similar to that introduced in Ref.@19#, are
discussed in Sec. IV. In Sec. V we report results from co
puter simulations ind51, 2, and 3 hypercubic lattices wit
periodic boundaries. The discussion, Sec. VI, contains a b
account of the static aspects of the model~Sec. VI A!, as
well as the possible heuristic explanation for the emerge
of these oscillations~see Sec. VI B!. A short conclusion
completes the paper in Sec. VII.

II. MODEL DESCRIPTION

The model consists of two kinds of particles, denotedA
andB, which follow the reaction sequence

A1*→
z

A* , ~1!

B* →
12z

B1* , ~2!

A*1B*→
`

2B* , ~3!

where the asterisk denotes a vacant site, and superscrip
terisk stands for an adsorbed particle. With sufficient gen
ality the catalysis surface can be simulated by
d-dimensional hypercubic lattice, where the autocatalytic
action step occurs only between nearest-neighbor part
on that lattice. It is also convenient to scale time so that
rate constant of theA adsorption equalsz, and ofB desorp-
tion 12z, while the last autocatalytic step is infinitely fas
Thus the whole reaction sequence Eqs.~1!–~3! depends only
on a single parameterz. The rate constants are transitio
probabilities in the master equation for the system@16#.

This model has several potential experimental realizati
in d52, simulating a class of possible realistic feedba
mechanisms. For example,A andB could be the same mol
ecule, which are adsorbed differently. ThenA may denote a
chemisorbed andB a physisorbed molecule, as neighbori
B weakens the bonding ofA and turns it toB @see Eq.~3!#.
Alternatively, B may be adsorbed on a reconstructed s
and such a molecule induces the same reconstruction
neighboring unreconstructed occupied site. On the o
hand,A could beB plus an additional ligand. Such a ligan
could desorb immediately ifA and B come into contact,
leaving twoB’s on the surface. We may also think of a fore
fire model: letA denote a green, andB a burning tree. In
particular, for smallz the trees grow slowly and burn fast.

III. ANALYTICAL RESULTS

It is convenient to characterize the macroscopic state
the system by monitoring the coveragesu i(t), (i5* ,A,B),
i.e., the fraction of sites occupied by particlei at the time
n
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t. Because every site is either vacant or occupied byA or
B, these coverages obey a conservation law

uA~ t !1uB~ t !1u* ~ t !51. ~4!

It is easy to write the time evolution of the coverage in t
form of rate equations

duA
dt

5zu*2zK@AB#, ~5!

duB
dt

52~12z!uB1zK@AB#, ~6!

du*
dt

52zu*1~12z!uB , ~7!

where@AB# is the probability to find aB to the right of an
A at an arbitrary horizontal pair of neighboring sites, and
factorz52d follows from the use of square symmetry, e.g
@AB# 5@BA#, in d dimensions. The parameterK is the rate
constant of the autocatalytic reaction. Note that although
are interested in the infinitely fast reaction rateK→`, the
productK@AB# may remain finite. Equations~5!, ~6!, and~7!
are exact, but contain the distribution@AB#, which is un-
known.

Some time averaged results for the coverages can be
rived, because the time average of the derivatives at the
hand side of Eqs.~5!, ~6!, and~7! vanish. In that case Eq.~7!
gives

z^u* &5~12z!^uB&, ~8!

where the brackets denote the time averaging. Equation~8!
simply states that on average the number of adsorbingA’s
must equal the number of desorbingB’s. In addition, using
Eqs. ~4! and ~8!, we find that the average coverage of o
species is enough to determine the coverages of other
cies, e.g.,

^uB&5
z

12z
^u* &5z~12^uA&!. ~9!

This exactrelation is an important guide to study the mod
in the limit z→0 ~see Sec. IV!.

It is easy to solve Eqs.~5!, ~6!, and~7! in the mean field
approximation ~MFA!, which involves setting @AB#
5uAuB . A straightforward calculation yields equilibrium
points (̂ uA&,^uB&)5(1,0) and (z/zK,z2z2/zK) @17#. The
A-poisoned state corresponds to a saddle point, so the sy
will evolve to (z/zK,z2z2/zK)→(0,z), asK→`. Previous
work @17,20# has clearly pointed out that the MFA is inad
equate to describe the behavior of this model, as it fails
predict the temporal oscillations of the coverages~see Sec.
V B!. However, it is interesting to note that the MFA give

^uB&5zbMF11, ~10!

12^uA&515zbMF, ~11!

with bMF50. Below, we shall compare this prediction wit
numerical data.
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Another useful observable is the average number
A1B→2B reactions perA adsorption,

s̄ads~z!5(
s50

`

sPads~s,z!, ~12!

wherePads(s,z) is the probability that an adsorption ofA is
immediately followed bys autocatalytic reactions@see Eq.
~3!# for given z. If A adsorbs on a site without neighborin
B,s50. Because at the steady state each adsorbingA will
later transform intoB via the autocatalytic reaction, we hav
the constraints̄ads51 for all z. Thus it is more interesting to
look only at realavalanches; i.e., the distribution of the num
ber of A’s which turn intoB’s following an A adsorption.
The average sizes̄ of these avalanches is given by

s̄~z!5(
s51

`

sP~s,z!, ~13!

whereP(s,z) is the probability that an avalanche has s
s. In other words,P(s,z) is the size distribution ofA clusters
on the surface, ands̄(z) is the mean cluster size. Distributio
P(s,z) is proportional toPads(s,z) for s>1. The proportion-
ality constant can be derived from the normalization. W
have(s50

` Pads(s,z)5(s51
` P(s,z)51, which leads to

P~s,z!5
Pads~s,z!

12Pads~0,z!
. ~14!

Consequently,

s̄5
1

12Pads~0,z!
. ~15!

In the spirit of the MF approximation we may assume that
z is small,uB is small as well, and therefore allB’s are well
separated

Pads~0,z!'
^u* &2z^uB&

^u* &
. ~16!

In that case

s̄~z!'
^u* &
z^uB&

5
12z

zz
, ~17!

where the last step follows from Eq.~8!. This approximate
calculation gives a solid reason to anticipate that the siz
the avalanches, i.e., the mean size ofA clusters, diverges a
z→0. Such a divergence dictates that we expect the mod
possess a critical pointzc50 ~for all d), and

P~s,0!}s2t for s@1, ~18!

with t<2.

IV. NUMERICAL METHODS

We have performed Monte Carlo simulations
d-dimensional hypercubic lattices withd51, 2, and 3 using
periodic boundary conditions. We utilize two kinds of sim
lations, which are described below.
f

e

f

of

to

A. Direct Monte Carlo simulations

These simulations were started from a lattice fully co
ered withB’s at time t50. Subsequently we followed th
time evolution of the system according to Eqs.~1!, ~2!, and
~3!. The correct time scale for the evolution of the syste
was obtained by considering the transition probabilit
Wba , which indicate the probability for the system to evolv
from a configurationa to b. ~These transition probabilities
arez for A adsorption, 12z for B desorption, andK for the
autocatalytic reaction.! In particular, the first reaction which
brings the system froma to b will take time Dt, which is
exponentially distributed@14–16#,

Dt52
1

Ra
lnr , ~19!

whereRa5(bWba is the total transition rate from the con
figurationa, and r is a uniformly distributed random num
ber, 0,r,1. Specifically, using Eqs.~1!, ~2!, and~3!,

Ra~ t !5NB~12z!1N* z, ~20!

whereNB(N* ) is the number ofB molecules~vacant sites!
at time t. The first term in Eq.~20! indicates the probability
of B desorption, and the second ofA adsorption. The infi-
nitely fastA1B reactions do not affectDt.

Thus the simulation algorithm is the following:
~1! Calculate Ra from Eq. ~20!. Update the clock

t→t1Dt @see Eq.~19!#.
~2! With the probabilityN* z/Ra the next reaction isA

adsorption, otherwiseB desorption.
~3! If the next reaction isB desorption, then randomly

select a site which is occupied by aB and make it empty.
UpdateN*→N*11, NB→NB21, and go to 1.

~4! If the next reaction isA adsorption, then select a va
cant site at random and fill that withA. Update
N*→N*21.

~5! Check the nearest-neighbor sites.
~6! If there are noB next to the newly adsorbedA, then

go to ~1!.
~7! Identify all s A’s which belong to the same cluste

with the newly adsorbedA. Turn them intoB’s. Update
NB→NB1s. Go to ~1!.

The system was simulated for~2–15!3103 time units.
The first half of the time steps were discarded in order
allow the system to evolve into a steady state. During
latter half of the simulation we monitored the time evolutio
of the coverages of the adsorbates, as well as collected
togram of the probability distribution of the avalanch
sizess.

We simulated system sizes between 106 and 23107 sites.
Because the fluctuations in the coverages, which may driv
finite system to theA poisoned state, are larger for small
z ~see below!, we increased the system size gradually
z→0. However, due to the larger fluctuations and limitatio
in the available computer memory, we could not simulate
system behavior properly for very smallz. To this end we
utilized another simulation method, the constant-B coverage
ensemble, which is described below.
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55 4173OSCILLATORY TEMPORAL BEHAVIOR IN AN . . .
B. Simulations with constant-B coverage

This approach is based on Eq.~9!, which implies that the
average coverage of two species can be used to deter
z, e.g.,

z5
^uB&

~12^uA&!
. ~21!

We started the simulations from a system where a fixed f
tion of sites, the targetB coverageūB , was randomly occu-
pied byB’s, while the rest of the sites were empty. Subs
quently the system was simulated similarly to Sec. IV A, b
the choice betweenB desorption andA adsorption was de
termined by theB coverage at timet. If uB(t). ūB , the next
reaction wasB desorption, otherwiseA adsorption. In this
manneruB(t) was kept at the target coverageūB on average.
After a certain transient period the system evolved to
steady state, and the average coverage ofA’s, ūA , was mea-
sured. Using Eq.~21! we can determine the effective value
z which corresponds to these values ofūA and ūB .

This method facilitates the simulations at smallz. In prac-
tice, the lower limit inz is dictated by the available compute
memory, because we requireNB@1, i.e., ūB cannot be too
small. In this work we performed simulations down
ūB51024–1023, which corresponds toz'1024–1023.
On the other hand, because the time evolution of the s

tem was not determined by the master equation, these s
lations do not have the correct time dependence. There

FIG. 1. The ratio~a! ^uB&/(12^uA&) vs z, and~b! ^uB&/^u* & vs
z/(12z). The data are collected using both direct simulatio
~filled markers! and constant-B coverage ensemble~open markers!.
Different symbols denote the results from 1D (s), 2D (L), and
3D (h) hypercubic lattices. The dashed lines on the diagonal
Eq. ~9!.
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we could not use this method for studying the dynami
behavior of the system, but only average coverages as
as the avalanche size distribution were monitored. In p
ciple, lack of the correct time dependence could also m
that the measuredūA differs from the true time average
value ^uA&. We studied this by measurinĝuA& and ^uB&
from direct Monte Carlo~MC! simulations, and performing a
constant-B coverage simulation atūB5^uB&. Within the nu-
merical accuracy we found that theA coverages of these two
simulation methods coincided,ūA5^uA&.

V. SIMULATION RESULTS

A. Average coverages

In this section we study the average coverages as a f
tion of z. We start by checking Eq.~9!, which suggests tha
it is sufficient to monitor only the coverage of one species
adsorbants, for example,^uB&. Figure 1 shows the ratios
^uB&/(12^uA&)5z and ^uB&/^u* &5z/(12z) for d51, 2,
and 3 hypercubic lattices. The data are collected using b
direct and constant-B coverage simulations. Indeed, all th

s

re

FIG. 2. The log-log plot of̂ uB& as a function ofz from ~a! 1D,
~b! 2D, and~c! 3D hypercubic lattices. The data are collected us
both direct simulations (d) and a constant-B coverage ensemble
(s). The solid lines, which depict the power-law behavior for sm
z, have slopes~a! 1.24, ~b! 1.04, and~c! 1.01.
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FIG. 3. uB(t) for ~a! 1D, ~b! 2D, and~c! 3D
hypercubic lattices. Each panel displays typic
simulation results for four values ofz ~from top
to bottom!: ~a! z50.40, 0.34, 0.28, and 0.265;~b!
z50.20, 0.13, 0.09, and 0.05; and~c! z50.20,
0.10, 0.05, and 0.023.
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data collapse excellently on the diagonal lines of Fig. 1@see
Eq. ~9!#, independent of the dimensionality. This also n
merically justifies the constant-B ensemble, which we hav
used especially for smallz.

Figure 2 showŝuB& as a function ofz for the hypercubic
lattices using both direct and constant-B coverage simula-
tions. For clarity, the figure does not show overlappi
points, but it can be seen that the data from both ensem
again fall on the same curve, except for some deviation
Fig. 2~a! at z'0.27. The constant-B-coverage simulation
does not give the same result as the direct one in 1D, bec
the former method forces the system into the reactive s
even when the system would like to poison forj,0.265. In
fact, direct simulations in 1D forz,0.265 always tend to-
wards anA-poisoned state due to the finite system siz
which we could simulate. More accurate computations w
constant-B ensemble numerically confirm that there exists
reactive steady state for allz.zc50, as discussed below Eq
~17!.

Figure 2 also shows that^uB& is quite a complicated func
tion of z, especially in 1D. The data for^uA& and^u* & also
show similar behavior~data not shown!. However, for small
z, i.e., nearzc , all the data seem to approach a power l
~see, e.g., the solid lines in Fig. 2!

^uB&}zb11, ~22!

12^uA&5z21^uB&}zb, ~23!

^u* &5
12z

z
^uB&}zb. ~24!
-

les
in

se
te

s
h

Using least square fits to the data of Fig. 2, we fi
b1D50.2460.04, b2D50.0460.04, andb3D50.0160.04.
Similar analysis of the data for̂uA& and ^u* & gave consis-
tent results, although the corrections to the asymptotic
havior seem to be more important in these data than
^uB&. The above error bars ofb are dominated by the sprea
of the fits depending on which set of the data was used in
analysis.

We can now compare the above measurements with
MFA results, Eqs.~10! and ~11!, wherebMF50. We find
that ^uB& and 12^uA& behave as in Eqs.~10! and ~11! suf-
ficiently close tozc . In particular, in 2D and 3D the data ar
consistent withb2D5b3D50. However,b1D is clearly dif-
ferent from zero. In other words, our simulations indica
that in 1D limz→0(uA ,uB ,u* )5(1,0,0), but in higher di-
mensions the steady state approaches to a mixture ofA par-
ticles and vacant sites.

B. Coverages as a function of time

The main motivation for studying this particular model
the complicated temporal behavior, involving periodic osc
lations in the coverages. Because the constant-B coverage
ensemble lacks the correct time dependence, all the resu
this section are from direct MC simulations. Unfortunate
this excludes the simulations for very smallz.

Figure 3 displays the temporal evolution ofuB(t) for sev-
eral values ofz. It can be seen that the amplitude of fluctu
tions increases with decreasingz. This behavior is most
clearly seen in 2D data of Fig. 3~b!, where especially the dat
for z50.05 show clear oscillatory behavior.
ls

FIG. 4. The power spectraS(v) of the

Fourier-transforms of the data of Fig. 3. Pane
showS(v) for ~a! 1D, ~b! 2D, and~c! 3D hyper-
cubic lattices, with the same values ofz as in Fig.
3 (z decreases from top to bottom!. For clarity,
raw S(v) is normalized such that the maximum
equals unity.
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55 4175OSCILLATORY TEMPORAL BEHAVIOR IN AN . . .
To analyze these oscillations in more detail, we Four
transformed the data of Fig. 3. Resulting power spec
S(v) are shown in Fig. 4. For clarity, theS’s are normalized
such that the maximum equals unity. We find that especi
the spectra of 2D and 3D data in Figs. 4~b! and 4~c! show
clear peaks, i.e., fingerprints of periodic oscillations
uB(t), with a well defined frequencyv. The oscillations are
again especially clear in the spectrum of 2D data w
z50.05, where we can distinguish more than ten overto
~only six of them are shown in Fig. 4!. The peaks of 2D and
3D spectra become more and more pronounced asz→0,
which again indicates that the oscillation amplitude is lar
for smaller z ~also see Fig. 3!. In addition, asz→0, the
characteristic frequency of the oscillations decreases. H
ever, the 1D data in Fig. 4~a! is less clear. In fact, we do no
find convincing evidence of periodic oscillations in 1D, b
cannot rule out such a possibility just from these data
cause we could not extend 1D simulations for very smalz.

In order to study how the oscillations depend on the s
tem sizeL, we repeated the calculation of the power spec
for severalL. In this context we studied mostlyd52, where
the oscillations are most pronounced. To distinguish the
plitude of periodic oscillations from the statistical noi
~which is larger for smaller systems!, we estimated the nois

FIG. 5. The scaled power spectrumS(v)/Sn , which describes
the signal to noise ratio, for different system sizesL: solid, dashed,
and dotted lines show the data forL5512, 1024, and 2000, respec
tively. Data are from 2D simulations atz50.09.

FIG. 6. The distribution of the avalanche sizesP(s,z'0) from
d51, 2, and 3 dimensional hypercubic lattices (s,L, andh, re-
spectively!. In 1D, z'0.003 96; in 2D,z'0.001 70; and in 3D,
z'0.000 13. The dashed line guiding the eye has slope21.65.
These systems had 7–93106 sites depending on the value ofd.
r
a

ly

s

r

-

-

-
a

-

level Sn from the average of the signalS far away from the
peak. The scaled spectraS(v)/Sn should describe the signa
to noise ratio. For example, Fig. 5 displaysS(v)/Sn for
z50.09 using systems with linear sizesL5512, 1024, and
2000, where the noise levelSn is the average ofS(v) be-
tweenv50.5–0.8. We find that the spectra show an oscil
tory behavior withv'0.08, where the frequency does n
depend onL. Additionally, the relative amplitude of the os
cillations is an increasing function ofL. Similar tests with
other values ofz, as well as the 3D data, yielded the sam
conclusions~data not shown!. Thus we conclude that the
periodic oscillations in the particle coverages are not due
the finite size effects.

C. Distribution of avalanche sizes

We start this section by testing Eq.~18!. For that purpose
we have utilized the constant-B coverage ensemble, whic
facilitates the simulations at smallz. As discussed above, th
lower limit in z is set by the available computer memor
Figure 6 shows the calculatedP(s,z'0) using the data for
smallestz available to us. Indeed, the data confirm Eq.~18!,
apart from deviations for very larges, which are mainly due

FIG. 7. The 2D distribution of the avalanche sizesP(s,z'0) at
z'0.001 70 for various system sizes:L5100 (s), L5300 (L),
L51000 (h), andL53000~n!. Diagonal dashed lines have slop
1.65. The inset shows the crossover sizesmax(L)}L

n, which is
estimated from the intercept of dashed lines depicting the pow
law decay and plateaulike regime. The solid line in the inset
slope 1.6.

FIG. 8. The 2D distribution of the avalanche sizesP(s,z)
for various values ofz:z'0.001 70 ~s!, z'0.0163 ~L!, z
50.05 ~h!, andz50.09 ~n!. The dashed line has slope 1.65.



re

4176 55J.-P. HOVI, A. P. J. JANSEN, AND R. M. NIEMINEN
FIG. 9. The time dependence ofuB and of the
number of the avalanches of sizes andrs , where
rs’s are averaged over a bin@2k/2,21/22k/2#. The
figures show~from bottom to top! uB and rs’s
with k50, 2, 4, 6, 8, 10, and 12. The data a
collected using~a! z50.265 in 1D,~b! z50.05 in
2D, and~c! z50.023 in 3D. For clarity, the num-
ber of avalanches, as well asuB , is scaled such
that the maximum equals unity.
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to the finite system size~see below!. We estimate that
t51.6560.1, wheret seems to~but need not! be indepen-
dent ond.

To study howP depends on the size of the system, w
repeated the 2D simulations atz'0.00170(ūB51023) for
severalL. The results are displayed in Fig. 7. From the
data it is apparent that for finite systems Eq.~18! holds only
up to a size dependent cutoffsmax(L), at which the data
levels toward a plateaulike regime. The dashed lines in Fi
illustrate this kind of behavior. We estimated the crosso
sizesmax roughly from the intercepts of these lines. Plottin
the estimates as a function ofL, as done in the inset of Fig
7, indicates thatsmax grows algebraically withL,

smax}L
n, ~25!

wheren2D51.660.1.
Figure 8 shows the measured distributionP(s,z) for sev-

eral values ofz in 2D. The data show that a nonzeroz has a
similar effect as the finite system size. It introduces a cu
size to the power-law decay ofP. For z.0, the data seem to
decay roughly exponentially for very larges.smax8 (z), but
we have not performed detailed study of the scaling ofP or
smax8 (z). In conclusion, we find that asz→zc50 the model
has avalanches ofall sizes. Test runs in 2D indicate tha
either the finite system size or nonzeroz, does not qualita-
tively affect the power-law decay until a certain cutoff siz

D. Avalanche density as a function of time

This section deals with the number of the avalanches
function of time, which has been measured from direct M
simulations. Figure 9 showsuB and the number of ava
lanches of sizes, rs , as a function of time. For clarity
rs(t) are calculated by collecting the data over exponentia
increasing bins, and the data are scaled such that the m
mum equals unity. Especially the 2D data in Fig. 9~b! show
that the oscillations inuB involve avalanches ofall sizes
~instead of being determined by the largest avalanches
example!. Remarkably, thers’s are alsosynchronizedsuch
that they occur with the same characteristicv for all s.

While the 1D and 3D data are less clear, we calculated
power spectra ofrs from the data of Figs. 9~a! and 9~c!. The
resulting spectra are shown in Fig. 10 together with
S(v) of uB . Indeed, the spectra indicate that the avalanc
e
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ff

.
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y
xi-

or

e

e
s

in 3D possess similar synchronization as in 2D@see Fig.
10~b!#, i.e., all rs show the same characteristic frequen
v'0.1. On the other hand, the 1D spectra forrs are practi-
cally identical to that ofuB , but they do not show evidenc
of periodic oscillations.

VI. DISCUSSION

A. Static aspects

The average coverages, e.g.,^uB&, are reasonably wel
understood using the implications from the rate equatio
especially Eq.~9!. We find that nearzc50, ^uB& ~as well as
^uA&,^u* &) decay as a power law characterized by an ex
nentb. At d52 the measuredb agrees with the MF resul
bMF50.

Concerning P(s,z), this autocatalytic reaction mode
shares many features with forest-fire models@21,22#, which
have been introduced as possible realization of s
organized criticality@23#. Specifically, we find thatP(s,0)
decays as a power law up to a finite-size cutoffsmax}L

n.
However, the current model is rather critical in the usu
sense of the word, as one needs to tunez→zc50 to achieve

FIG. 10. The power spectra of~a! 1D and~b! 3D data foruB and
rs’s @these data are shown in Figs. 9~a! and 9~c!#. The displayed
spectra~from bottom to top! are foruB , andrs with k50, 2, 4, and
6. For clarity, the spectra are scaled such that the maximum eq
unity.
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the critical state. Forz.0, P(s,z) decays roughly exponen
tially for s.smax8 (z).

B. Periodic oscillations

The main motivation for studying this particular model
the complicated temporal behavior, involving periodic osc
lations in the coverages. The simulation results presen
above give evidence that the model exhibits temporal os
lations in the coverages of the adsorbates, at least in two
three dimensions.

We find that these periodic oscillations nearz50 are re-
lated to synchronized avalanches, which occur with a w
defined frequency and come in all possible sizes~i.e., exhibit
power-law scaling!. Although we do not have a complet
theory for the emergence of the oscillations, possibly
simplest heuristic explanation for this synchronization of
avalanches is the following.@Look at Fig. 9~b!, for example.#
The typical cycle consists of a sudden increase ofuB fol-
lowed by a slower decrease. In the end of this decrease
riod, as mostB’s have desorbed,uB is very small, andA
clusters are free to grow. As there are very fewA1B reac-
tions, typicalA clusters grow until there is a nonzero pro
ability that an arbitrary cluster is separated from aB mol-
ecule only by a single vacant perimeter site. This happen
uA is close to the critical occupancyp̃c(uB)5pc(z) of this
kind of a random deposition problem.

This heuristics should qualitatively account for the o
served temporal behavior of this model. Most importan
the identification with such a deposition problem should
compatible with Eq.~18!, because one would reasonably e
pect that at the criticaluA5pc(z) the surface containsA
clusters of all sizes. In addition, during each period the nu
ber of A adsorptionsNads, which is needed to attainpc(z)
hasNads'z^N* &/v. Thus

pc~z!'max~uA!'min~uA!1NadsL
2d

'min~uA!1
z^N* &L2d

v

5min~uA!1
z^u* &

v
. ~26!

Using ^u &}zb, we find
*

is
-
ed
il-
nd

ll

e
e

e-

as

-
,
e
-

-

v'z11b/@max~uA!2min~uA!#. ~27!

Thus the characteristic frequency of the periodic oscillatio
is independent ofL. As the amplitude of the oscillations
1
2@max(uA)2min(uA)#, will increase when the average size
the avalanches increases,v→0 asz→0, in agreement with
the numerical data.

In principle, this heuristic explanation does not make
difference between different dimensionalities. However,
may happen that for somed, pc(z)→1 for z→zc,2.0,
which may cause that direct numerical simulations tend
the poisoned stateuA51 already atzc,2.zc50. It seems to
us that this is the case ind51, with zc,250.26260.005.
Thus we believe that the oscillations are not present in
dimension.

VII. CONCLUSION

In conclusion, we have reported analytical and numeri
studies for a simple autocatalytic surface reaction mod
which consists of two kinds of particles, say,A andB. Par-
ticle A adsorbs with ratez, particle B desorbs with rate
12z, and there is an infinitely fast autocatalytic reaction s
A1B→2B occurring on the surface. In particular, the sta
aspects of this model, like the behavior of the average c
erages as a function of the control parameterz, are well
understood from simple arguments which use rate equati
Detailed studies of the temporal behavior of this model
veal periodic oscillations in the coverages~nearzc50) for
d52,3, but not for a 1D model. Our data show that the
periodic oscillations are related tosynchronizedavalanches
of A1B→2B reactions. These avalanches occur with a w
defined frequency, and come inall possible sizes. We were
not able to formulate a complete theory for the emergenc
these oscillations, but our heuristic argument, which pos
lates that the model is driven toward a critical state o
random deposition problem, is qualitatively able to acco
for the observed temporal behavior of this model ind<3.
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